Experimental evaluation of inline free-space holography systems
Applied Optics, ISSN: 2155-3165, Vol: 54, Issue: 13, Page: 3991-4000
2015
- 7Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is important to be able to quantify, theoretically and experimentally, the performance of coherent digital systems, so that their suitability for a given metrology application can be assessed. Here, a free-space inline digital holographic system is investigated. To isolate the scattered object field, phase-shifting interferometry (PSI) techniques are used. Several sequential holographic measurements are made, where the phase of the reference field is stepped by a known amount relative to the scattered object field between captures. Under ideal conditions such as noise-free electronics, vibration-free environments, and perfect reference and illuminating object waves, this system will be diffraction limited. However, real systems suffer from experimental error and noise effects. In this paper, we examine a PSI digital holographic imaging system considering all prominent error sources. An experimental metric is defined that quantifies how far from the theoretical ideal a real system is performing. By carefully optimizing our system, following our recommended guidelines, we approach diffraction limited imaging, surpassing the Nyquist sampling rate of the CCD/CMOS device.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84942371638&origin=inward; http://dx.doi.org/10.1364/ao.54.003991; https://www.osapublishing.org/abstract.cfm?URI=ao-54-13-3991; https://www.osapublishing.org/viewmedia.cfm?URI=ao-54-13-3991&seq=0; https://opg.optica.org/abstract.cfm?URI=ao-54-13-3991; https://dx.doi.org/10.1364/ao.54.003991; https://opg.optica.org/ao/abstract.cfm?uri=ao-54-13-3991
The Optical Society
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know