Integrated microRNA and proteome analysis of cancer datasets with MoPC
PLoS ONE, ISSN: 1932-6203, Vol: 19, Issue: 3 March, Page: e0289699
2024
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
Article Description
MicroRNAs (miRNAs) are small molecules that play an essential role in regulating gene expression by post-transcriptional gene silencing. Their study is crucial in revealing the fundamental processes underlying pathologies and, in particular, cancer. To date, most studies on miRNA regulation consider the effect of specific miRNAs on specific target mRNAs, providing wet-lab validation. However, few tools have been developed to explain the miRNAmediated regulation at the protein level. In this paper, the MoPC computational tool is presented, that relies on the partial correlation between mRNAs and proteins conditioned on the miRNA expression to predict miRNA-target interactions in multi-omic datasets. MoPC returns the list of significant miRNA-target interactions and plot the significant correlations on the heatmap in which the miRNAs and targets are ordered by the chromosomal location. The software was applied on three TCGA/CPTAC datasets (breast, glioblastoma, and lung cancer), returning enriched results in three independent targets databases.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85188420697&origin=inward; http://dx.doi.org/10.1371/journal.pone.0289699; http://www.ncbi.nlm.nih.gov/pubmed/38512819; https://dx.plos.org/10.1371/journal.pone.0289699; https://dx.doi.org/10.1371/journal.pone.0289699; https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0289699
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know