Enhanced quantitation of pathological α-synuclein in patient biospecimens by RT-QuIC seed amplification assays
PLoS Pathogens, ISSN: 1553-7374, Vol: 20, Issue: 9, Page: e1012554
2024
- 5Citations
- 7Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Data from National Institute for Allergy and Infectious Diseases Advance Knowledge in Nerve Tissue Proteins (Enhanced Quantitation of Pathological A-synuclein In Patient Biospecimens By Rt-quic Seed Amplification Assays)
2024 OCT 22 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- Investigators publish new report on Proteins - Nerve
Article Description
Disease associated pathological aggregates of alpha-synuclein (αSyn) exhibit prion-like spreading in synucleinopathies such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB). Seed amplification assays (SAAs) such as real-time quaking-induced conversion (RT-QuIC) have shown high diagnostic sensitivity and specificity for detecting proteopathic αSyn seeds in a variety of biospecimens from PD and DLB patients. However, the extent to which relative proteopathic seed concentrations are useful as indices of a patient’s disease stage or prognosis remains unresolved. One feature of current SAAs that complicates attempts to correlate SAA results with patients’ clinical and other laboratory findings is their quantitative imprecision, which has typically been limited to discriminating large differences (e.g. 5–10 fold) in seed concentration. We used end-point dilution (ED) RT-QuIC assays to determine αSyn seed concentrations in patient biospecimens and tested the influence of various assay variables such as serial dilution factor, replicate number and data processing methods. The use of 2-fold versus 10-fold dilution factors and 12 versus 4 replicate reactions per dilution reduced ED-RT-QuIC assay error by as much as 70%. This enhanced assay format discriminated as little as 2-fold differences in αSyn seed concentration besides detecting ~2-16-fold seed reductions caused by inactivation treatments. In some scenarios, analysis of the data using Poisson and midSIN algorithms provided more consistent and statistically significant discrimination of different seed concentrations. We applied our improved assay strategies to multiple diagnostically relevant PD and DLB antemortem patient biospecimens, including cerebrospinal fluid, skin, and brushings of the olfactory mucosa. Using ED αSyn RT-QuIC as a model SAA, we show how to markedly improve the inter-assay reproducibility and quantitative accuracy. Enhanced quantitative SAA accuracy should facilitate assessments of pathological seeding activities as biomarkers in proteinopathy diagnostics and prognostics, as well as in patient cohort selection and assessments of pharmacodynamics and target engagement in drug trials.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85204446315&origin=inward; http://dx.doi.org/10.1371/journal.ppat.1012554; http://www.ncbi.nlm.nih.gov/pubmed/39302978; https://dx.plos.org/10.1371/journal.ppat.1012554; https://dx.doi.org/10.1371/journal.ppat.1012554; https://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1012554
Public Library of Science (PLoS)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know