Application of the artificial neural networks for identification of polymers on the basis of their flammability
Polimery/Polymers, ISSN: 0032-2725, Vol: 65, Issue: 9, Page: 613-621
2020
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The work presents the structure and principle of operation of the artificial neuron network constructed for identification of a polymer on the basis of its flammability. The characteristic properties of burning of a polymer are saved in a special form in a database. The network creates a binary standard for each polymer from the database, coding data by means of the signals of the values 1, 0, -1. The network memorizes data related to each polymer detecting the similarities and differences between them and determines the weights which reflect the importance of particular features of its burning process.
Bibliographic Details
LUKASIEWICZ Research Network - Industrial Chemistry Research Institute
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know