Effects of rotenone and other mitochondrial complex I inhibitors on the brine shrimp Artemia
Acta Biologica Hungarica, ISSN: 0236-5383, Vol: 61, Issue: 4, Page: 401-410
2010
- 7Citations
- 7Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Brine shrimp (Artemia) nauplii was used to asses the toxicity of rotenone, MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), MPP (1-methyl-4-phenylpyridinium) and the effect of L-DOPA co-treatment with rotenone. Rotenone had a dose dependent effect on mortality (LC: 0.37 ± 0.04 μM mean ± SE, n = 24), while MPTP and MPP proved to be toxic in millimolar range (LC: 0.21 ± 0.09 mM and 0.20 ± 0.08 mM, respectively, n = 4). L-DOPA (50-200 μM) co-treatment increased the survival of the rotenone-treated animals (LC: 0.51 ± 0.23 μM, 1.03 ± 0.66 μM, and 0.76 ± 0.52 μM, respectively). In the whole body tissue homogenates of Artemia, sublethal (up to 0.3 μM) concentrations of rotenone increased the glutathione S-transferase (GST) activity by up to 50 about percent (LC : 53.3 ± 6.8 nM/min/mg protein, against 34.7 ± 3.6 nM/min/mg protein, n = 4). Nauplii treated in 100 mM L-DOPA and rotenone together showed further increase of GST activity all across the range of rotenone concentrations. These results on Artemia nauplii show similarities with other animal models, when complex I inhibitors were tested. Biochemical measurements suggest a protective role of L-DOPA by increasing the GST activity as part of the intracellular defences during toxin-evoked oxidative stress. © 2010 Akadémiai Kiadó, Budapest.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know