ANALYSIS OF THE STRESS-STRAIN STATE OF ALUMINUM ALLOY D16T UNDER A COMPLEX STRESS STATE ACCOUNTING FOR DAMAGE
PNRPU Mechanics Bulletin, ISSN: 2226-1869, Vol: 2023, Issue: 4, Page: 45-53
2023
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper studies the limiting state of D16T aluminum alloy under a complex stress state. Various types of combined loadings by tension, compression, torsion and internal pressure are considered. The determining conditions for many products of modern technologies are combinations of several loading components. The purpose of the study is to determine the effect of the accumulated damage in a material under a complex stress state on the characteristics of the material bearing capacity. A hollow cylindrical sample was chosen for the numerical and experimental studies. The experimental program included various combinations of axial forces, torque, and internal pressure applied to a cylindrical sample. In the numerical study, the exponential and linear-power law of isotropic hardening was used as the law of isotropic hardening. The damage accumulation law Lemaitre was used to determine the damage parameter. The generalized law of damage accumulation Leamitre and the law of isotropic hardening were integrated into the ANSYS finite element complex in the form of a dynamically linked library of custom material for three-dimensional problems. The states of hollow cylindrical samples are investigated. The fields of the stress-strain state, the fields of damage, as well as the values of limit stresses for various types of loading are obtained. Limit state diagrams are constructed taking into account damage accumulation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know