Experimental study of evaporating droplets suspended ethanol-water solution under conditions of forced convection
Interfacial Phenomena and Heat Transfer, ISSN: 2167-857X, Vol: 6, Issue: 2, Page: 115-127
2018
- 5Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper presents the results of an experimental study of the evaporation rate of suspended droplets pure water and a binary ethanol-water solution under conditions of forced convection (Re > 100). The results are compared with experimental data of other authors on evaporation of pure liquids. The evaporation rates of pure water droplets at different velocities of the flowing stream are measured. The dependence of the evaporation rate on the concentration of the less-volatile component is studied and the degree of the speed of the oncoming flow on the evaporation efficiency is estimated. A generalization of the experimental data shows that with an increase in the velocity of the incoming flow, the rate of evaporation slightly increases, but the change in the parameter A is not linear, and with an increase in the velocity, the rate of its increase noticeably decreases. Note that with the evaporation of ethanol-water solutions, the number of factors influencing the rate of evaporation increases, which complicates the generalization of data and the conduct of computational studies.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85068010359&origin=inward; http://dx.doi.org/10.1615/interfacphenomheattransfer.2018025580; http://www.dl.begellhouse.com/journals/728e68e739b67efe,22ff6db36ed199bc,0aad78295904d34d.html; https://dl.begellhouse.com/download/article/0aad78295904d34d/IPHT0602(2)-25580.pdf; https://dx.doi.org/10.1615/interfacphenomheattransfer.2018025580
Begell House
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know