Lack of spatial genetic structure among nesting and wintering King Eiders
Condor, ISSN: 0010-5422, Vol: 106, Issue: 2, Page: 229-240
2004
- 52Citations
- 50Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The King Eider (Somateria spectabilis) has been delineated into two broadly distributed breeding populations in North America (the western and eastern Arctic) on the basis of banding data and their use of widely separated Pacific and Atlantic wintering areas. Little is known about the level of gene flow between these two populations. Also unknown is whether behavioral patterns common among migratory waterfowl, such as site fidelity to wintering areas and pair formation at these sites, have existed for sufficient time to create a population structure defined by philopatry to wintering rather than to nesting locations. We used six nuclear microsatellite DNA loci and cytochrome b mitochondrial DNA sequence data to estimate the extent of spatial genetic differentiation among nesting and wintering areas of King Eiders across North America and adjacent regions. Estimates of interpopulation variance in microsatellite allele and mtDNA haplotype frequency were both low and nonsignificant based on samples from three wintering and four nesting areas. Results from nested clade analysis, mismatch distributions, and coalescent-based analyses suggest historical population growth and gene flow that collectively may have homogenized gene frequencies. The presence of several unique mtDNA haplotypes among birds wintering near Greenland suggests that gene flow may now be more limited between the western and eastern Arctic, which is consistent with banding data.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know