Reduction of Recombination at the Interface of Perovskite and Electron Transport Layer with Graded Pt Quantum Dot Doping in Ambient Air-Processed Perovskite Solar Cell
SSRN, ISSN: 1556-5068
2024
- 172Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The study of charge transfer in thin film solar cells made of several layers is of high importance since they may lose their energy via the recombination process at the interfaces, specifically at the interface of the electron transport layer (ETL) and perovskite. Titanium dioxide (TiO2) is mostly used as an ETL in perovskite solar cells due to its many advantages. However, TiO2 has some disadvantages, such as low electron mobility compared to the perovskite layer and electron trap states on its top at the interface. These effects cause the accumulation of carriers at the ETL/perovskite interface then the non-radiative recombination will be enhanced, which is considered as one of the significant losses in the Perovskite Solar Cells (PSCs). In this work, a new technique is taken for more optimal ETL doping. We fabricated the ETL layers with graded doping of platinum quantum dots (QDs),in which Pt QDs concentration is high at the ETL/Perovskite interface and zero at the FTO/ETL interface. This strategy not only suppresses the recombination at the ETL/perovskite interface and subsequently enhances the device efficiency from 12.92 % to 14.36 % but also improves the stability of the PSCs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know