Linear Dependence of Potential Drop at the Passive Film/Solution Interface on Film-Formation Potential and Ph: Combining First-Principles Calculations with Experiments
SSRN, ISSN: 1556-5068
2024
- 94Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Herein, we develop a model presenting the linear dependence of potential drop at passive film/solution interface (φf/s) on both potential and pH. By analyzing surface charge and performing first-principles calculations, we provide the insights into the effect of potential and pH on the φf/s, and into the linear relation between φf/s with pH beyond the Nernst relation that is attributed to the role of point defects in point of zero charge of passive film on iron. Two methods are suggested to determine values of α and β. The study of passivity of iron in borate buffer solutions validates our model.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know