Influence of Laser Machining Process on the Ablation Amount and Organizational Properties of Cemented Carbide
SSRN, ISSN: 1556-5068
2024
- 12Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Laser processing technology, with its non-contact, high-precision characteristics, has brought new hope for the processing of cemented carbide tools, and greatly expanded the application potential of cemented carbide. But there is a lack of research on the mechanism of laser ablation and material evolution of cemented carbide materials. This study examines the factors that influence the amount of ablation through two-factor experiments. Two laser machining processes, namely the Variable Parameter Indexing Alternate Machining (VPIAM) process and the Laser Enhanced Preparation Machining (LEPM) process,are proposed and compared to the conventional Unidirectional Continuous Ablation Machining (UCAM) process. To investigate the effects of the three processes on cemented carbide, comparative analyses of ablation amount, organizational properties, surface morphology, and surface roughness of the materials were performed under the three machining processes, and the relevant mechanisms were summarized. In this study, the power, pulse overlap rate, and line overlap rate of laser processing were regulated, and the experimental data were integrated. The results showed that the backfill effect occurs under the remelting and slag deposition effects, and the amount of material ablation under UCAM is small. The VPIAM technique effectively reduces the hindrance of slag and remelting during the ablation process by integrating slag removal and indexing processing. The increase in material ablation can range from 13.07-60.2 um, with a growth rate of 236-628%. Using the LEPM process, the remelted layer undergoes several laser shocks, resulting in the total elimination of micro-cracks. Furthermore, the material particles within the reinforced layer undergo a refinement process, and some of these particles form bonds with the remelted layer. The layer reinforced with material exhibits a higher degree of uniformity and straightness, enhancing the surface characteristics of the processed material to some extent.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know