A New Approach in the Network DEA Models for Measurement of Productivity of Decision-Making Units Using Multi-Objective Programming Method
International Journal of Industrial Engineering and Production Research, ISSN: 2345-363X, Vol: 32, Issue: 3
2021
- 2Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
So far, numerous studies have been developed to evaluate the performance of "Decision-Making Units (DMUs)" through "Data Envelopment Analysis (DEA)" and "Network Data Envelopment Analysis (NDEA)" models in different places, but most of these studies have measured the performance of DMUs by efficiency criteria. The productivity is considered as a key factor in the success and development of DMUs and its evaluation is more comprehensive than efficiency evaluation. Recently, studies have been developed to evaluate the productivity of DMUs through the mentioned models but firstly, the number of these studies especially in NDEA models is scarce, and secondly, productivity in these studies is often evaluated through the "productivity indexes". These indexes require at least two time periods and also the two important elements of efficiency and effectiveness in these studies are not significantly evident. So, the purpose of this study is to develop a new approach in the NDEA models using "Multi-Objective Programming (MOP)" method in order to measure productivity of DMUs through efficiency and effectiveness "simultaneously, in one stage, in a period, and interdependently". "Simultaneous and single-stage" study provides the advantage of sensitivity analysis in the model. One case study demonstrates application of the proposed approach in the branches of a Bank. Using proposed approach revealed that it is possible for a branch to be efficient by considering its subdivisions separately but not be efficient by considering the conjunction between its subdivisions. In addition, a branch may be efficient by considering the conjunction between its subdivisions but not be productive. Efficient branches are not necessarily productive, but productive branches are also efficient.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know