Hydrothermal treatment of sugars to obtain high-value products
Journal of the Serbian Chemical Society, ISSN: 1820-7421, Vol: 85, Issue: 1, Page: 97-109
2020
- 7Citations
- 18Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present work, the degradation of different sugars, such as lactose, cellobiose, sucrose, galactose, glucose, fructose and xylose, was performed in batch reactor with subcritical water at temperature of 250 °C and reaction time of 1, 5 and 15 min. The yields of water-soluble phase, acetonesoluble phase, solid residue and gases were determined. The influence of reaction time and difference in sugar structure on the yield of phases and conversion of sugars was studied. Sugars with keto- and furanose structures were less stable than aldo- and pyranose-sugars. The most stable sugars were aldo-hexoses (galactose and glucose). The water-soluble fraction, which is composed of sugars and their derivatives, was analyzed by HPLC using RI and UV detectors. The detected degradation products by HPLC were: 5-hydroxymethylfurfural (5-HMF), furfural, erythrose, sorbitol, 1,6-anhydroglucose, glycolaldehyde, glycerlaldehyde, 1,3-dihydroxyacetone, pyruvaldehyde, formic, levulinic, lactic, oxalic and succinic acids.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know