Lyapunov-Guided Energy Scheduling and Computation Offloading for Solar-Powered WSN
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 13, Issue: 8
2023
- 1Citations
- 5Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Researchers at North China Electric Power University Release New Study Findings on Applied Sciences (Lyapunov-Guided Energy Scheduling and Computation Offloading for Solar-Powered WSN)
2023 MAY 15 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- A new study on applied sciences is now available.
Article Description
To satisfy the continuously high energy consumption and high computational capacity requirements for IoT applications, such as video monitoring, we integrate solar harvesting and multi-access edge computing (MEC) technologies to develop a solar-powered MEC system. Considering the stochastic nature of solar arrivals and channel conditions, we formulate a stochastic optimization problem to maximize network energy efficiency under the constraints of energy queue stability, task queue stability, peak transmission power, and maximum CPU frequency of each sensor. To solve the long-term stochastic optimization problem, we propose a Lyapunov-based online joint computational offloading and resource scheduling optimization algorithm, transforming the long-term stochastic problem into a series of deterministic subproblems in each time slot. Simulation results show that the proposed algorithm can find the optimal solution to tradeoff long-term energy efficiency and queueing backlog without requiring a priori knowledge of the channel state and energy arrival, which is a more realistic solution for practical solar-powered MEC systems.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know