Cyclic Loading Test of Rectangular Tube-Type Buckling-Restrained Braces with Enhancements to Prevent Local Bulging Failure
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 13, Issue: 19
2023
- 1Citations
- 7Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, innovative enhancements of rectangular tube-type buckling-restrained braces are proposed to prevent bulging failure on the surface of the outer restrainer and validated experimentally. First, an inner restrainer composed of a bent plate, which increases the stiffness and strength to resist outward force exerted by the steel core subjected to higher-mode buckling, is installed inside the outer restrainer. Second, the unbonding material surrounding the steel core is partially thickened to create additional space to prevent the outward force from being transferred directly along the centerline of the cross-section. Buckling-restrained braces with and without the enhancements are tested via cycling loading to validate the efficiency of the proposed enhancements. Improvements in strength and deformation capacity are evaluated quantitatively. The proposed enhancements increased the compressive strength and cumulative inelastic deformation capacity of the buckling-restrained braces. However, the increased outward force owing to the compression-hardening phenomenon led to bulging failure, where the added inner restrainer terminated. An analytical formula is proposed to estimate the outward-force-resisting capacity of the inner restrainer, which predicted bulging failure adequately.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know