Mask R-CNN-Based Stone Detection and Segmentation for Underground Pipeline Exploration Robots
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 14, Issue: 9
2024
- 2Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Stones are one of the primary objects that impede the normal activity of underground pipelines. As human intervention is difficult inside a narrow underground pipe, a robot with a machine vision system is required. In order to remove the stones during regular robotic inspections, precise stone detection, segmentation, and measurement of their distance from the robot are needed. We applied Mask R-CNN to perform an instant segmentation of stones. The distance between the robot and the segmented stones was calculated using spatial information obtained from a lidar camera. Artificial light was used for both image acquisition and testing, as natural light is not available inside the underground pipe. ResNet101 was chosen as the foundation of the Mask R-CNN, and transfer learning was utilized to shorten the training time. The experimental results of our model showed that the average detection precision rate reached 92.0; the recall rate was 90.0%; and the F1 score rate reached 91.0%. The distance values were calculated efficiently with an error margin of 11.36 mm. Moreover, the Mask R-CNN-based stone detection model can detect asymmetrically shaped stones in complex background and lighting conditions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know