Optical parametric amplification techniques for the generation of high-energy few-optical-cycles IR pulses for strong field applications
Applied Sciences (Switzerland), ISSN: 2076-3417, Vol: 7, Issue: 3
2017
- 46Citations
- 125Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Over the last few decades, the investigation of ultrafast phenomena occurring in atoms, molecules and solid-state systems under a strong-field regime of light-matter interaction has attracted great attention. The increasing request for a suitable optical technology is significantly boosting the development of powerful ultrafast laser sources. In this framework, Optical Parametric Amplification (OPA) is currently becoming a leading solution for applications in high-power ultra-broadband light burst generation. The main advantage provided by the OPA scheme consists of the possibility of exploring spectral ranges that are inaccessible by other laser technologies, as the InfraRed (IR) window. In this paper, we will give an overview on recent progress in the development of high-power few-optical-cycle parametric amplifiers in the near-IR and in the mid-IR spectral domain. In particular, the design of the most advanced OPA implementations is provided, containing a discussion on the key technical aspects. In addition, a review on their application to the study of strong-field ultrafast physical processes is reported.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know