Stress-Based Model for Calculating the Opening Angle of Notch Cracks in a Magnesium Alloy under Multiaxial Fatigue
Crystals, ISSN: 2073-4352, Vol: 14, Issue: 3
2024
- 2Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
- Mentions1
- Blog Mentions1
- Blog1
Article Description
This paper presents a model to calculate the opening angle of crack initiation in notched fractures subjected to multiaxial loading. To validate the proposed model, a study was performed on polished AZ31B-F magnesium alloy specimens under multiaxial high-cycle fatigue loading. The specimens exhibited a notch in the smaller cross-sectional area, which was created with a special drilling jig to promote the formation of fatigue cracks in this localized area of the specimen. The load paths used in the experiments and numerical analyses were proportional and non-proportional, resulting in different stress states in the crack front opening, which were determined by finite element analysis to validate the proposed model. To obtain more accurate numerical results for these estimates, these finite element analyses were performed using the nonlinear Chaboche plasticity model of ABAQUS 2021 software. A sensitivity analysis was also performed to determine which load component—axial or torsional—has a greater influence on the fatigue strength and contributes significantly to the crack opening process. The results show that the type of load path and the stress level of each load component—axial and torsional—has a strong influence on the opening angle of the notch crack and the fatigue lifetime of the specimen. This result is confirmed not only by the experimentally determined fatigue strength, but also by a fractographic analysis performed on the surface of the specimens for both load paths. Moreover, the results show an acceptable correlation between the experimental results and the estimates obtained with the proposed model and the stresses obtained with the finite element analysis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know