A Fast Method for the Selection of Samples in Populations with Available Genealogical Data
Diversity, ISSN: 1424-2818, Vol: 14, Issue: 2
2022
- 2Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Optimal selection of samples in populations should provide the best coverage of sample variations for the available sampling resources. In populations with known genealogical connections, or pedigrees, this amounts to finding the set of samples with the largest sum of mutual distances in a genealogical tree. We present an optimal, and a faster sub-optimal, method for the selection of K samples from a population of N individuals. The optimal method works in time proportional to NK, and the sub-optimal in time proportional to NK, which is more practical for large populations. The sub-optimal algorithm can process pedigrees of millions of individuals in a matter of minutes. With the real-life pedigrees, the difference in the quality of the output of the two algorithms is negligible. We provide the Python3 source codes for the two methods.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know