Energy and entropy in turbulence decompositions
Entropy, ISSN: 1099-4300, Vol: 21, Issue: 2
2019
- 8Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The role of energy and entropy in the decomposition of turbulent velocity flow-fields is shown in this paper. Decomposition methods based on the energy concept are taken into account-proper orthogonal decomposition (POD) and its extension bi-orthogonal decomposition (BOD). The methods are well known; however, various versions are used and the interpretation of results is not straightforward. To make this clearer, the specific definition of modes is suggested and specified; moreover, energy- and entropy-motivated views on the decomposed modes are presented. This concept could offer new possibilities in the physical interpretation of modes and in reduced-order modeling (ROM) strategy efficiency evaluation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know