Gravity drainage mechanism in naturally fractured carbonate reservoirs; review and application
Energies, ISSN: 1996-1073, Vol: 12, Issue: 19
2019
- 30Citations
- 44Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Gravity drainage is one of the essential recovery mechanisms in naturally fractured reservoirs. Several mathematical formulas have been proposed to simulate the drainage process using the dual-porosity model. Nevertheless, they were varied in their abilities to capture the real saturation profiles and recovery speed in the reservoir. Therefore, understanding each mathematical model can help in deciding the best gravity model that suits each reservoir case. Real field data from a naturally fractured carbonate reservoir from the Middle East have used to examine the performance of various gravity equations. The reservoir represents a gas–oil system and has four decades of production history, which provided the required mean to evaluate the performance of each gravity model. The simulation outcomes demonstrated remarkable differences in the oil and gas saturation profile and in the oil recovery speed from the matrix blocks, which attributed to a different definition of the flow potential in the vertical direction. Moreover, a sensitivity study showed that some matrix parameters such as block height and vertical permeability exhibited a different behavior and effectiveness in each gravity model, which highlighted the associated uncertainty to the possible range that often used in the simulation. These parameters should be modelled accurately to avoid overestimation of the oil recovery from the matrix blocks, recovery speed, and to capture the advanced gas front in the oil zone.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know