Water Uptake and Hormone Modulation Responses to Nitrogen Supply in Populus simonii under PEG-Induced Drought Stress
Forests, ISSN: 1999-4907, Vol: 13, Issue: 6
2022
- 7Citations
- 8Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present study, the effects of nitrogen (N) supply on water uptake, drought resistance, and hormone regulation were investigated in Populus simonii seedlings grown in hydroponic solution with 5% polyethylene glycol (PEG)-induced drought stress. While acclimating to drought, the P. simonii seedlings exhibited a reduction in growth; differential expression levels of aquaporins (AQPs); activation of auxin (IAA) and abscisic acid (ABA) signaling pathways; a decrease in the net photosynthetic rate and transpiration rate; and an increase in stable nitrogen isotope composition (δN), total soluble substances, and intrinsic water use efficiency (WUEi), with a shift in the homeostasis of reactive oxygen species (ROS) production and scavenging. A low N supply (0.01 mM NHNO) or sufficient N supply (1 mM NHNO) exhibited distinct morphological, physiological, and transcriptional responses during acclimation to drought, primarily due to strong responses in the transcriptional regulation of genes encoding AQPs; higher soluble phenolics, total N concentrations, and ROS scavenging; and lower transpiration rates, IAA content, ABA content, and ROS accumulation with a sufficient N supply. P. simonii can differentially manage water uptake and hormone modulation in response to drought stress under deficient and sufficient N conditions. These results suggested that increased N may contribute to drought tolerance by decreasing the transpiration rate and O production while increasing water uptake and antioxidant enzyme activity.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know