The role of the surface nano-roughness on the wettability performance of microstructured metallic surface using direct laser interference patterning
Materials, ISSN: 1996-1944, Vol: 12, Issue: 7
2019
- 36Citations
- 62Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations36
- Citation Indexes36
- 36
- CrossRef30
- Captures62
- Readers62
- 62
Article Description
Superhydrophobic natural surfaces usually have multiple levels of structure hierarchy, particularly microstructures covered with nano-roughness. The multi-scale nature of such a surface reduces the wetting of water and oils, and supports self-cleaning properties. In this work, in order to broaden our understanding of the wetting properties of technical surfaces, biomimetic surface patterns were fabricated on stainless steel with single and multi-scale periodic structures using direct laser interference patterning (DLIP). Micropillars with a spatial period of 5.5 μmand a structural depth of 4.2 μm were fabricated and covered by a sub-micro roughness by using ultrashort laser pulses, thus obtaining a hierarchical geometry. In order to distinguish the influence of the different features on the wettability behavior, a nanosecond laser source was used to melt the nano-roughness, and thus to obtain single-scale patterns. Then, a systematic comparison between the single- and multi-scale structures was performed. Although, the treated surfaces showed hydrophilic behavior directly after the laser treatment, over time they reached a steady-state hydrophobic condition. However, the multi-scale structured metal showed a contact angle 31° higher than the single-scale geometry when the steady-state conditions were reached. Furthermore, the impact of the surface chemistry was investigated by energy dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) analyses. Finally, a hydrophobizing agent was applied to the laser treated samples in order to further enhance the water contact angles and to determine the pure contribution of the surface topography. In the latter case, the multi-scale periodic microstructures reached static contact angles of 152° ± 2° and a contact angle hysteresis of only 4° ± 2°, while the single-scale structures did not show superhydrophobic behavior. These results definitely suggest that multi-scale DLIP structures in conjunction with a surface chemistry modification can promote a superhydrophobic regime.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know