Chitosan-Recombinamer Layer-by-Layer Coatings for Multifunctional Implants.

Citation data:

International journal of molecular sciences, ISSN: 1422-0067, Vol: 18, Issue: 2, Page: 369

Publication Year:
Usage 47
Full Text Views 24
Abstract Views 23
Captures 3
Exports-Saves 2
Readers 1
Social Media 1
Shares, Likes & Comments 1
Citations 3
Citation Indexes 3
Govindharajulu, Jeevan Prasaad; Chen, Xi; Li, Yuping; Rodriguez-Cabello, Jose Carlos; Battacharya, Mrinal; Aparicio, Conrado
Chemical Engineering; Biochemistry, Genetics and Molecular Biology; Chemistry; Computer Science
article description
The main clinical problems for dental implants are (1) formation of biofilm around the implant-a condition known as peri-implantitis and (2) inadequate bone formation around the implant-lack of osseointegration. Therefore, developing an implant to overcome these problems is of significant interest to the dental community. Chitosan has been reported to have good biocompatibility and anti-bacterial activity. An osseo-inductive recombinant elastin-like biopolymer (P-HAP), that contains a peptide derived from the protein statherin, has been reported to induce biomineralization and osteoblast differentiation. In this study, chitosan/P-HAP bi-layers were built on a titanium surface using a layer-by-layer (LbL) assembly technique. The difference in the water contact angle between consecutive layers, the representative peaks in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), X-ray photoelectron spectroscopy (XPS), and the changes in the topography between surfaces with a different number of bi-layers observed using atomic force microscopy (AFM), all indicated the successful establishment of chitosan/P-HAP LbL assembly on the titanium surface. The LbL-modified surfaces showed increased biomineralization, an appropriate mouse pre-osteoblastic cell response, and significant anti-bacterial activity against Streptococcus gordonii, a primary colonizer of tissues in the oral environment.