PlumX Metrics
Embed PlumX Metrics

ABC algorithm based fuzzy modeling of optical glucose detection

Advances in Electrical and Computer Engineering, ISSN: 1844-7600, Vol: 16, Issue: 3, Page: 37-42
2016
  • 3
    Citations
  • 0
    Usage
  • 10
    Captures
  • 0
    Mentions
  • 2
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    3
    • Citation Indexes
      3
  • Captures
    10
  • Social Media
    2
    • Shares, Likes & Comments
      2
      • Facebook
        2

Article Description

This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC) algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE) of 0.0013 which are in clearly good agreement with the measurements.

Bibliographic Details

Omer Galip Saracoglu; Aytekin Bagis; Mehmet Konar; Timucin Emre Tabaru

Stefan cel Mare University of Suceava

Computer Science; Engineering

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know