A surface-based approach for 3D approximate convex decomposition
Turkish Journal of Electrical Engineering and Computer Sciences, ISSN: 1303-6203, Vol: 32, Issue: 6, Page: 774-789
2024
- 233Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage233
- Downloads146
- Abstract Views87
Article Description
Approximate convex decomposition simplifies complex shapes into manageable convex components. In this work, we propose a novel surface-based method that achieves efficient computation times and sufficiently convex results while avoiding overapproximation of the input model. We start approximation using mesh simplification. Then we iterate over the surface polygons of the mesh and divide them into convex groups. We utilize planar and angular equations to determine suitable neighboring polygons for inclusion in forming convex groups. To ensure our method outputs a sufficient result for a wide range of input shapes, we run multiple iterations of our algorithm using varying planar thresholds and mesh simplification levels. For each level of simplification, we find the planar threshold that leads to the decomposition with the least number of pieces while remaining under a certain concavity threshold. Subsequently, we find the simplification level that houses the decomposition with the least concavity, and output that decomposition as our result. We demonstrated experiment results that show the stability of our method as well as compared our work to two convex decomposition algorithms, providing discussion on the shortcomings and advantages of the proposed method. Notably, our main advantage turns out to be on time efficiency as we produce output faster than our competitors which, however, outperform our results for some models from an accuracy perspective.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85210944532&origin=inward; http://dx.doi.org/10.55730/1300-0632.4102; https://journals.tubitak.gov.tr/elektrik/vol32/iss6/4; https://journals.tubitak.gov.tr/cgi/viewcontent.cgi?article=4102&context=elektrik; https://dx.doi.org/10.55730/1300-0632.4102; https://journals.tubitak.gov.tr/elektrik/vol32/iss6/4/
The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM) - DIGITAL COMMONS JOURNALS
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know