Proton percolation on hydrated lysozyme powders.
Proceedings of the National Academy of Sciences of the United States of America, ISSN: 0027-8424, Vol: 83, Issue: 18, Page: 6810-4
1986
- 105Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations105
- Citation Indexes105
- CrossRef105
- Captures20
- Readers20
- 20
Article Description
The framework of percolation theory is used to analyze the hydration dependence of the capacitance measured for protein samples of pH 3-10, at frequencies from 10 kHz to 4 MHz. For all samples there is a critical value of the hydration at which the capacitance sharply increases with increase in hydration level. The threshold h(c) = 0.15 g of water per g of protein is independent of pH below pH 9 and shows no solvent deuterium isotope effect. The fractional coverage of the surface at h(c) is in close agreement with the prediction of theory for surface percolation. We view the protonic conduction process described here for low hydration and previously for high hydration as percolative proton transfer along threads of hydrogen-bonded water molecules. A principal element of the percolation picture, which explains the invariance of h(c) to change in pH and solvent, is the sudden appearance of long-range connectivity and infinite clusters at the threshold h(c). The relationship of the protonic conduction threshold to other features of protein hydration is described. The importance of percolative processes for enzyme catalysis and membrane transport is discussed.
Bibliographic Details
Proceedings of the National Academy of Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know