Mechanics of arterial subfailure with increasing loading rate
Journal of Biomechanics, ISSN: 0021-9290, Vol: 40, Issue: 8, Page: 1806-1812
2007
- 32Citations
- 51Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations32
- Citation Indexes32
- 32
- CrossRef26
- Captures51
- Readers51
- 51
Article Description
Arterial subfailure leads to delayed symptomatology and high morbidity and mortality rates, particularly for the thoracic aorta and carotid arteries. Although arterial injuries occur during high-velocity automotive collisions, previous studies of arterial subfailure focused on quasi-static loading. This investigation subjected aortic segments to increasing loading rates to quantify effects on elastic, subfailure, and ultimate vessel mechanics. Sixty-two specimens were axially distracted, and 92% demonstrated subfailure before ultimate failure. With increasing loading rate, stress at initial subfailure and ultimate failure significantly increased, and strain at initial subfailure and ultimate failure significantly decreased. Present results indicate increased susceptibility for arterial subfailure and/or dissection under higher-rate extension. According to the present results, automotive occupants are at greater risk of arterial injury under higher velocity impacts due to greater body segment motions in addition to decreased strain tolerance to subfailure and catastrophic failure.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S0021929006002983; http://dx.doi.org/10.1016/j.jbiomech.2006.07.005; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=34247842705&origin=inward; http://www.ncbi.nlm.nih.gov/pubmed/17034799; https://linkinghub.elsevier.com/retrieve/pii/S0021929006002983; https://dx.doi.org/10.1016/j.jbiomech.2006.07.005
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know