Experimentally validated three-dimensional finite element model of the rat for mild traumatic brain injury
Medical and Biological Engineering and Computing, ISSN: 0140-0118, Vol: 51, Issue: 3, Page: 353-365
2013
- 29Citations
- 68Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations29
- Citation Indexes29
- 29
- CrossRef18
- Captures68
- Readers68
- 68
Article Description
The aim of our work was to expand on the knowledge concerning mild Traumatic Brain Injuries (TBI), by combining numerical modeling and animal experiments within a joint approach. A three-dimensional finite element model of the rat brain and braincase was developed, and experimental acceleration pulses were applied. Pulse data were obtained from tests conducted using anesthetized rats, subjected to coronal plane rotational acceleration loadings of varying amplitudes and durations, aimed to generate mild TBI. Times of loss of consciousness were obtained. Biomechanical response parameters generally associated with TBI (stresses and strains) in the three anatomical regions, i.e., hypothalamus, thalamus and parietal cortex were analyzed. While the parameters correlated well with changes in injury severity linked to peak rotational acceleration, they were relatively insensitive to the pulse duration or times of loss of consciousness. As a consequence, new stress-time and strain-time metrics were computed, and these metrics were more efficient in predicting changes in injury severity associated both with acceleration characteristics and loss of consciousness outcomes in all three anatomical regions controlling the aforementioned behavior. Results of our analysis tend to show that time-related metrics may be more suited for the explanation of mild TBI than commonly used peak metrics in the three anatomical regions of the brain. © 2012 International Federation for Medical and Biological Engineering.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84877128642&origin=inward; http://dx.doi.org/10.1007/s11517-012-1004-7; http://www.ncbi.nlm.nih.gov/pubmed/23192366; http://link.springer.com/10.1007/s11517-012-1004-7; https://dx.doi.org/10.1007/s11517-012-1004-7; https://link.springer.com/article/10.1007/s11517-012-1004-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know