Discriminability and Perceptual Saliency of Temporal and Spectral Cues for Final Fricative Consonant Voicing in Simulated Cochlear-Implant and Bimodal Hearing.

Citation data:

Trends in hearing, ISSN: 2331-2165, Vol: 20, Page: 1-15

Publication Year:
Usage 10
Abstract Views 5
Link-outs 3
Downloads 2
Captures 15
Readers 12
Exports-Saves 3
Citations 1
Citation Indexes 1
Repository URL:
Kong, Ying-Yee; Winn, Matthew B.; Poelmann, Katja; Donaldson, Gail S.
SAGE Publications
Medicine; Health Professions; cue weighting; cochlear implant; bimodal hearing; spectral degradation; Communication Sciences and Disorders
article description
Multiple redundant acoustic cues can contribute to the perception of a single phonemic contrast. This study investigated the effect of spectral degradation on the discriminability and perceptual saliency of acoustic cues for identification of word-final fricative voicing in "loss" versus "laws", and possible changes that occurred when low-frequency acoustic cues were restored. Three acoustic cues that contribute to the word-final /s/-/z/ contrast (first formant frequency [F1] offset, vowel-consonant duration ratio, and consonant voicing duration) were systematically varied in synthesized words. A discrimination task measured listeners' ability to discriminate differences among stimuli within a single cue dimension. A categorization task examined the extent to which listeners make use of a given cue to label a syllable as "loss" versus "laws" when multiple cues are available. Normal-hearing listeners were presented with stimuli that were either unprocessed, processed with an eight-channel noise-band vocoder to approximate spectral degradation in cochlear implants, or low-pass filtered. Listeners were tested in four listening conditions: unprocessed, vocoder, low-pass, and a combined vocoder + low-pass condition that simulated bimodal hearing. Results showed a negative impact of spectral degradation on F1 cue discrimination and a trading relation between spectral and temporal cues in which listeners relied more heavily on the temporal cues for "loss-laws" identification when spectral cues were degraded. Furthermore, the addition of low-frequency fine-structure cues in simulated bimodal hearing increased the perceptual saliency of the F1 cue for "loss-laws" identification compared with vocoded speech. Findings suggest an interplay between the quality of sensory input and cue importance.