Performance characterization and optimization of microgrid-based energy generation and storage technologies

Publication Year:
Usage 285
Downloads 165
Abstract Views 120
Repository URL:
Guggenberger, Joe D., II
Missouri University of Science and Technology
Geological Engineering
thesis / dissertation description
"Renewable energy-powered microgrids have proven to be a valuable technology for self-contained (off-grid) energy systems. Characterizing microgrid system performance pre-deployment would allow the system to be appropriately sized to meet all required electrical loads at a given renewable source operational time frequency. A vanadium redox battery was empirically characterized to determine operating efficiency as a function of charging characteristics and parasitic load losses. A model was developed to iteratively determine system performance based on known weather conditions and load requirements. A case study was performed to compare modeled system performance to measurements taken during operation of the microgrid system. Another iterative model was developed to incrementally predict the microgrid operating performance as a function of diesel generator operating frequency. Calibration of the model was performed to determine accurate PV panel and inverter efficiencies. A case study was performed to estimate the constant loads the system could power at varying diesel generator operating frequencies. Typical Meteorological Year 3 (TMY3) data from 217 Class I locations throughout the United States was inserted into the model to determine the quantity of external AC and DC load the system could supply at intermittent diesel generator variable operational frequencies. Ordinary block Kriging analysis was performed using ArcGIS to interpolate AC and DC load power between TMY3 Class I locations for each diesel generator operating frequency. Figures representing projected AC and DC external load were then developed for each diesel generator operating frequency"--Abstract, page iv.