Spatially continuous distributed fiber optic sensing using optical carrier based microwave interferometry.

Citation data:

Optics express, ISSN: 1094-4087, Vol: 22, Issue: 15, Page: 18757-69

Publication Year:
2014
Usage 4
Abstract Views 4
Captures 12
Readers 12
Citations 36
Citation Indexes 36
Repository URL:
http://scholarsmine.mst.edu/ele_comeng_facwork/3266
PMID:
25089493
DOI:
10.1364/oe.22.018757
Author(s):
Huang, Jie; Lan, Xinwei; Luo, Ming; Xiao, Hai
Publisher(s):
The Optical Society; Optical Society of America
Tags:
Physics and Astronomy; Interferometers; Optical fibers; Reflection; Fabry-Perot interferometers; Fiber optics; Interferometers; Internet protocols; Optical fibers; Reflection; Chemical and biologicals; Distributed measurements; Distributed strain measurement; Fiber-optic sensing; Microwave interferometries; Optical interferometer; Optical path difference; Single optical fibers; Internet protocols; Interferometry; Interferometers; Optical fibers; Reflection; Fabry-Perot interferometers; Fiber optics; Internet protocols; Reflection, Chemical and biologicals; Distributed measurements; Distributed strain measurement; Fiber-optic sensing; Microwave interferometries; Optical interferometer; Optical path difference; Single optical fibers, Internet protocols; Interferometry; Electrical and Computer Engineering
article description
This paper reports a spatially continuous distributed fiber optic sensing technique using optical carrier based microwave interferometry (OCMI), in which many optical interferometers with the same or different optical path differences are interrogated in the microwave domain and their locations can be unambiguously determined. The concept is demonstrated using cascaded weak optical reflectors along a single optical fiber, where any two arbitrary reflectors are paired to define a low-finesse Fabry-Perot interferometer. While spatially continuous (i.e., no dark zone), fully distributed strain measurement was used as an example to demonstrate the capability, the proposed concept may also be implemented on other types of waveguide or free-space interferometers and used for distributed measurement of various physical, chemical and biological quantities.