Transport anisotropy and percolation in the two-dimensional random-hopping model

Citation data:

Physical Review B, ISSN: 0163-1829, Vol: 35, Issue: 7, Page: 3468-3477

Publication Year:
Usage 5
Abstract Views 3
Downloads 2
Citations 15
Citation Indexes 15
Repository URL:
Kundu, Kalyan P.; Parris, Paul Ernest; Phillips, Philip W.
American Physical Society (APS)
Physics and Astronomy; Physics
article description
We consider hopping transport on an anisotropic two-dimensional square lattice. The displacements parallel to one axis are governed by uniform, nearest-neighbor hopping rates c, while the displacements parallel to the other axis are governed by static but spatially fluctuating rates wn. Adapting a new class of generating functions recently introduced for the random-trapping problem, we are able to obtain expressions for the mean-square displacement in the fluctuating direction through an exact decoupling of the effects due to displacements in the uniform direction. The resulting expressions for the low-frequency diffusion coefficient D() are exact in the limits c0 [D(0)=1/w-1] and c [D(0)=w]. Moreover, when the condition of long-time isotropy is imposed we obtain expressions which are, to lowest order in the fluctuations, identical to results obtained in the effective-medium approximation for the square lattice with fluctuating rates in both directions. The present method offers the possibility of systematic improvements to the effective-medium results for the dc conductivity and frequency corrections. © 1987 The American Physical Society.