Quantitative rescattering theory for laser-induced high-energy plateau photoelectron spectra

Citation data:

Physical Review A - Atomic, Molecular, and Optical Physics, ISSN: 1050-2947, Vol: 79, Issue: 3

Publication Year:
2009
Captures 84
Readers 84
Citations 96
Citation Indexes 96
arXiv Id:
0812.1524
DOI:
10.1103/physreva.79.033409
Repository URL:
http://scholarsmine.mst.edu/phys_facwork/1658; http://arxiv.org/abs/0812.1524
Author(s):
Chen, Zhangjin; Le, Anh-Thu; Morishita, Toru; Lin, C. D.
Publisher(s):
American Physical Society (APS)
Tags:
Physics and Astronomy; Atoms; Distributed Parameter Networks; Model Checking; Photoelectron Spectroscopy; Photoelectrons; Photoionization; Photons; Pulsed Laser Applications; Targets; Wave Packets; Waves; Atomic Targets; Chemical Imaging; Differential Cross Sections; Dinger Equations; Electron Wave Packets; Femto-Seconds; Few-Cycle Infrared Lasers; Free Electrons; High Energies; High-Energy Photoelectrons; Intense Laser Pulse; Laser Intensities; Laser-Induced; Molecular Targets; Momentum Distributions; Photoelectron Spectrum; Rescattering; Single Active Electron Approximations; Strong-Field Approximations; Target Ions; Temporal Resolutions; Time Dependents; Laser Theory; Physics - Atomic Physics; Atoms; Distributed Parameter Networks; Model Checking; Photoelectron Spectroscopy; Photoelectrons; Photoionization; Photons; Pulsed Laser Applications; Targets; Wave Packets; Waves, Atomic Targets; Chemical Imaging; Differential Cross Sections; Dinger Equations; Electron Wave Packets; Femto-Seconds; Few-Cycle Infrared Lasers; Free Electrons; High Energies; High-Energy Photoelectrons; Intense Laser Pulse; Laser Intensities; Laser-Induced; Molecular Targets; Momentum Distributions; Photoelectron Spectrum; Rescattering; Single Active Electron Approximations; Strong-Field Approximations; Target Ions; Temporal Resolutions; Time Dependents, Laser Theory; Physics
article description
A comprehensive quantitative rescattering (QRS) theory for describing the production of high-energy photoelectrons generated by intense laser pulses is presented. According to the QRS, the momentum distributions of these electrons can be expressed as the product of a returning electron wave packet with the elastic differential cross sections (DCS) between free electrons with the target ion. We show that the returning electron wave packets are determined mostly by the lasers only and can be obtained from the strong field approximation. The validity of the QRS model is carefully examined by checking against accurate results from the solution of the time-dependent Schrödinger equation for atomic targets within the single active electron approximation. We further show that experimental photoelectron spectra for a wide range of laser intensity and wavelength can be explained by the QRS theory, and that the DCS between electrons and target ions can be extracted from experimental photoelectron spectra. By generalizing the QRS theory to molecular targets, we discuss how few-cycle infrared lasers offer a promising tool for dynamic chemical imaging with temporal resolution of a few femtoseconds. © 2009 The American Physical Society.