How can Data Analytics Results be Exploited in the Early Phase of Product Development? 13 Design Principles for Data-Driven Product Planning
2022
- 123Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage123
- Abstract Views85
- Downloads37
- Plays1
Artifact Description
The megatrend digitalization turns mechatronic products into continuous collectors and generators of use phase data. By analyzing this data, manufacturers can uncover valuable insights about the products and the users. Especially in product planning, these insights could be used to plan promising future product generations. The systematic exploitation of data analytics results, however, represents a serious challenge, as research on the topic is still scarce. In this paper, we present 13 design principles for exploiting data analytics results in product planning. The results are based on a systematic literature review and a workshop with a research consortium. The evaluation of the design principles is demonstrated with a real case of a manufacturing company. The identified design principles represent a first contribution to a still scarcely explored research field.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know