No Longer Out of Sight, No Longer Out of Mind? How Organizations Engage with Process Mining-Induced Transparency to Achieve Increased Process Awareness
Vol: 63, Issue: 5, Page: 491-510
2021
- 370Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage370
- Downloads221
- Abstract Views149
Artifact Description
In recent years, process mining has emerged as the leading big data technology for business process analysis. By extracting knowledge from event logs in information systems, process mining provides unprecedented transparency of business processes while being independent of the source system. However, despite its practical relevance, there is still a limited understanding of how organizations act upon the pervasive transparency created by process mining and how they leverage it to benefit from increased process awareness. Addressing this gap, this study conducts a multiple case study to explore how four organizations achieved increased process awareness by using process mining. Drawing on data from 24 semi-structured interviews and archival sources, this study reveals seven sociotechnical mechanisms based on process mining that enable organizations to create either standardized or shared awareness of sub-processes, end-to-end processes, and the firm’s process landscape. Thereby, this study contributes to research on business process management by revealing how process mining facilitates mechanisms that serve as a new, data-driven way of creating process awareness. In addition, the findings indicate that these mechanisms are influenced by the governance approach chosen to conduct process mining, i.e., a top-down or bottom-up driven implementation approach. Last, this study also points to the importance of balancing the social complications of increased process transparency and awareness. These results serve as a valuable starting point for practitioners to reflect on measures to increase organizational process awareness through process mining.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know