TACKLING SIMPSON'S PARADOX IN BIG DATA USING CLASSIFICATION & REGRESSION TREES
2014
- 287Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage287
- Abstract Views179
- Downloads108
Artifact Description
This work is aimed at finding potential Simpson´s paradoxes in Big Data. Simpson´s paradox (SP) arises when choosing the level of data aggregation for causal inference. It describes the phenomenon where the direction of a cause on an effect is reversed when examining the aggregate vs. disaggregates of a sample or population. The practical decision making dilemma that SP raises is which level of data aggregation presents the right answer. \ \ We propose a tree-based approach for detecting SP in data. Classification and regression trees are popular predictive algorithms that capture relationships between an outcome and set of inputs. They are used for record-level predictions and for variable selection. We introduce a novel usage for a cause-and-effect scenario with potential confounding variables. A tree is used to capture the relationship between the effect and the set of cause and potential confounders. We show that the tree structure determines whether a paradox is possible. The resulting tree graphically displays potential confounders and the confounding direction, allowing researchers or decision makers identify potential SPs to be further investigated with a causal toolkit.. We illustrate our SP detection approach using real data for both a single confounder and for multiple confounder in a large dataset on Kidney transplant waiting time.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know