An Introduction to the MISD Technology
2017
- 218Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage218
- Downloads194
- Abstract Views24
Artifact Description
The growth of data volume, velocity, and variety will be the global IT challenges in the next decade. To overcome performance limits, the most effective innovations such as cognitive computing, GPU, FPGA acceleration, and heterogeneous computing have to be integrated with the traditional microprocessor technology. As the fundamental part of most computational challenges, the discrete mathematics should be supported both by the computer hardware and software. But for now, the optimization methods on graphs and big data sets are generally based on software technology, while hardware support is promising to give a better result. \ \ In this paper, the new computing technology with direct hardware support of discrete mathematic functions is presented. The new non-Von Neumann microprocessor named Structure Processing Unit (SPU) to perform operations over large data sets, data structures, and graphs was developed and verified in Bauman Moscow State Technical University. The basic principles of SPU implementation in the computer system with multiple instruction and single data stream (MISD) are presented. We then introduce the programming techniques for such a system with CPU and SPU included. The experimental results and performance tests for the universal MISD computer are shown.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know