Customization of IBM Intu’s Voice by Connecting Text-to-Speech Services and a Voice Conversion Network
2018
- 133Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage133
- Downloads98
- Abstract Views35
Artifact Description
IBM has recently launched Project Intu, which extends the existing web-based cognitive service Watson with the Internet of Things to provide an intelligent personal assistant service. We propose a voice customization service that allows a user to directly customize the voice of Intu. The method for voice customization is based on IBM Watson’s text-to-speech service and voice conversion model. A user can train the voice conversion model by providing a minimum of approximately 100 speech samples in the preferred voice (target voice). The output voice of Intu (source voice) is then converted into the target voice. Furthermore, the user does not need to offer parallel data for the target voice since the transcriptions of the source speech and target speech are the same. We also suggest methods to maximize the efficiency of voice conversion and determine the proper amount of target speech based on several experiments. When we measured the elapsed time for each process, we observed that feature extraction accounts for 59.7% of voice conversion time, which implies that fixing inefficiencies in feature extraction should be prioritized. We used the mel-cepstral distortion between the target speech and reconstructed speech as an index for conversion accuracy and found that, when the number of target speech samples for training is less than 100, the general performance of the model degrades.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know