Towards predictive part quality and predictive maintenance in industrial machining - a data-driven approach
2020
- 205Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage205
- Downloads143
- Abstract Views62
Artifact Description
Programs such as Industry 4.0 and Internet of Things contain the promise of "intelligent production" with "smart services". In fact, great advances have already been made in sensor technology and machine connectivity. Production plants continuously generate and communicate large amounts of data and have become "cyber-physical systems". However, the task of gaining knowledge from these large amounts of data is still challenging. Data generated by numerical control (NC) and programmable logic controllers (NC) comes in a raw format that doesn’t allow the application of analytical methods directly. Extensive preprocessing and feature engineering has to be applied to structure this data for further analysis. An important application is the timely detection of deviations in the production process which allows immediate reactions and adjustments of production parameters or indicates the necessity of a predictive maintenance action. In our research, we aimed at the identification of special deviant behavior of a grinding machine based on NC data. One finding wast the distinguishing the warm-up program from regular production and the other to recognize imprecise identification of the grinding process window. Both tasks could be solved with extensive preprocessing of the raw data, appropriate feature extraction and feature reduction, and the subsequent application of a clustering algorithm.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know