Public Perceptions of Facebook’s Libra Digital Currency Initiative: Text Mining on Twitter
2021
- 193Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage193
- Downloads126
- Abstract Views67
Artifact Description
Large corporations in the financial and technology sectors are increasingly interested in digital currencies, and central bank digital currencies are being actively researched around the globe. In this study, we analyzed the public discourse conducted through the social media platform Twitter concerning Facebook’s Libra digital currency initiative. Text mining of tweets posted during the one-month period around the official announcement of the digital currency project revealed that the majority of the public have a neutral sentiment toward the proposed digital currency. However, those with positive attitudes outnumbered those perceiving the digital currency initiative as negative, and the negative sentiment mainly stemmed from anger and anxiety. Through topical modeling analysis using latent Dirichlet allocation, we identified eight themes in the public discourse related to Facebook Libra. The study provides an early exploratory assessment of factors facilitating and hindering user adoption of one of the most important practical applications of blockchain technology.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know