Intersectional Identities and Machine Learning: Illuminating Language Biases in Twitter Algorithms
2022
- 86Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage86
- Downloads79
- Abstract Views7
Artifact Description
Intersectional analysis of social media data is rare. Social media data is ripe for identity and intersectionality analysis with wide accessibility and easy to parse text data yet provides a host of its own methodological challenges regarding the identification of identities. We aggregate Twitter data that was annotated by crowdsourcing for tags of “abusive,” “hateful,” or “spam” language. Using natural language prediction models, we predict the tweeter’s race and gender and investigate whether these tags for abuse, hate, and spam have a meaningful relationship with the gendered and racialized language predictions. Are certain gender and race groups more likely to be predicted if a tweet is labeled as abusive, hateful, or spam? The findings suggest that certain racial and intersectional groups are more likely to be associated with non-normal language identification. Language consistent with white identity is most likely to be considered within the norm and non-white racial groups are more often linked to hateful, abusive, or spam language.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know