An Approach for the Direct Inclusion of Weather Information in the Power Flow
2023
- 143Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage143
- Downloads94
- Abstract Views49
Artifact Description
While it is widely recognized that weather impacts the power flow, historically weather information has only been implicitly included. This paper presents an approach for the direct inclusion of weather information in the power flow. Key issues addressed by the paper include the availability of weather information, the mapping of weather information to electric grid components, a flexible and extensible modeling approach for relating weather values to the power flow models, and the visualization of the weather impacts. The approach is demonstrated on several electric grids ranging in size from 7000 to 82,000 buses using weather data over several different years.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know