Susceptibility to Social Engineering in Social Networking Sites: The Case of Facebook
2015
- 413Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage413
- Downloads210
- Abstract Views203
Article Description
Past research has suggested that social engineering poses the most significant security risk. Recent studies have suggested that social networking sites (SNSs) are the most common source of social engineering attacks. The risk of social engineering attacks in SNSs is associated with the difficulty of making accurate judgments regarding source credibility in the virtual environment of SNSs. In this paper, we quantitatively investigate source credibility dimensions in terms of social engineering on Facebook, as well as the source characteristics that influence Facebook users to judge an attacker as credible, therefore making them susceptible to victimization. Moreover, in order to predict users’ susceptibility to social engineering victimization based on their demographics, we investigate the effectiveness of source characteristics on different demographic groups by measuring the consent intentions and behavior responses of users to social engineering requests using a role-play experiment.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know