Time Series Classification Using Images
2022
- 724Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage724
- Downloads614
- Abstract Views110
Conference Paper Description
This work is a contribution to the field of time series classification. We propose a novel method that transforms time series into multi-channel images, which are then classified using Convolutional Neural Networks as an at-hand classifier. We present different variants of the proposed method. Time series with different characteristics are studied in this paper: univariate, multivariate, and varying lengths. Several selected methods of time-series-to-image transformation are considered, taking into account the original series values, value changes (first differentials), and changes in value changes (second differentials). In the paper, we present an empirical study demonstrating the quality of time series classification using the proposed approach.
Bibliographic Details
International Conference on Information Systems Development
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know