The Development of Audit Detection Risk Assessment System: Using the Fuzzy Theory and Audit Risk Model
2007
- 584Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage584
- Downloads338
- Abstract Views246
Article Description
The result of audit designation is significantly influenced by the audit evidence collected when planning the audit and the degree of detection risk is further depends on the amount of audit evidence. Therefore, when the assessment factors of detection risk are more objective and correct, audit costs and the risk of audit failure can be reduced. Thus, the aim of this paper is to design an audit detection risk assessment system that could more precisely assess detection risk, comparing with the traditional determination method of detection risk in order to increase the audit quality and reduce the possibility of audit failure. First, the grounded theory is used to reorganize 53 factors affecting detection risk mentioned in literatures and then employed the Delphi method to screen the 43 critical risk factors agreed upon by empirical audit experts. In addition, using the fuzzy theory and audit risk model to calculate the degree of detection risk allow the audit staff to further determine the amount of audit evidence collected and set up initial audit strategies and construct the audit detection risk assessment system. Finally, we considered a case study to evaluate the system in terms of its feasibility and validity.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know