PlumX Metrics
Embed PlumX Metrics

From Twitter to COVID-19: Using NLP to Predict COVID-19 Infections

2021
  • 0
    Citations
  • 392
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The ongoing COVID-19 pandemic creates tremendous negative impacts on our health systems, businesses, and society. Therefore, monitoring the spread of the ongoing pandemic is an essential but challenging task. In this work, we first describe an annotated COVID-19 Twitter dataset that we provide to the research community to tackle this task. It allows identifying actual and potential COVID-19 patients as well as groups of potential COVID-19 positive contacts using social network sites. Second, we show that it is possible to detect COVID-positive users on the Twitter platform and estimate the officially reported COVID-19 infections in the U.S. per state by leveraging state-of-the-art Natural Language Processing (NLP) techniques. Moreover, our results reveal a high spatial and temporal correlation with the reported data, indicating a good fit for estimating the cumulated and time series' trend and a promising foundation for decision support and monitoring the pandemic.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know