Machine Learning-Based Detection of High Trait Anxiety Using Frontal Asymmetry Characteristics in Resting-State EEG Recordings
2021
- 186Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage186
- Abstract Views169
- Downloads17
Article Description
Due to the rising prevalence and severe influence on society’s physiological and mental health, anxiety has emerged globally as one of the most severe disorders. While delayed detection and treatment can lead to fatal consequences for an individual’s health, preventive interventions are required to identify and treat the disease prematurely. Detecting trait anxiety could significantly reduce the prevalence of anxiety disorders. This study proposes a machine learning model that uses unfolded EEG spectra and frontal asymmetric brain activity characteristics to diagnose anxiety tendencies. With our approach, we identified the most predictive electrodes and the corresponding frequency subbands to distinguish between low and high levels of trait anxiety in individuals (F8/F7 9.110 Hz, 16.117 Hz; FC6/FC5 5.16 Hz; AF4/AF3 18.119 Hz; F2/F1 33.134 Hz). By achieving a balanced accuracy of 81.25 percent, our novel detection approach represents a benchmark in objectively detecting different stages of trait anxiety.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know