Role of MSA in Immune Evasion, Persistence, and Protease Regulation in the Human Pathogenic Strains of Staphylococcus aureus
2013
- 268Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage268
- Downloads222
- Abstract Views46
Thesis / Dissertation Description
Opportunistic pathogens like Staphylococcus aureus on entering the host can stay colonized at the foci of infection or evade the immune system to disseminate to other sites. In this study we investigated the regulatory influence of the modulator of sarA (msa) on immune evasion and host persistence, employing the hospital-acquired strain S. aureus UAMS-1 and community-acquired strain S. aureus USA300 LAC. In the murine sepsis model, mutation of the msa gene in LAC showed no change in dissemination of infection; however, in UAMS-1 a decrease in microbial load was observed in the lungs. Differential regulation by the msa gene was also observed in the blood survival and neutrophil assays. Several evasion factors were found to be regulated by msa, namely the scn, clfA, spa, aur, and sak genes. Interestingly, the combination of factors and the regulation of these factors differed in the two strains.S. aureus form biofilms on post-surgical wounds, prosthetic devices, and various host tissues that are resilient to immunological clearance and antimicrobial treatments. Biofilm detachment is a stage of biofilm development that aids in metastasis of infection. Proteases are one of the factors that trigger biofilm detachment. In our study, we observed msa to regulate proteases of S. aureus strain LAC when they are not in the form of a biofilm community; however, when they form biofilms the regulatory effect on proteases by the msa gene is absent. Thus, we show the environment-dependent behavior of the msa gene.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know