Digestive Physiology of Marine Larvae: An Overview of Adaptations and Mechanisms
2024
- 5Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage5
- Abstract Views5
Book Chapter Description
The importance of studying digestive physiology in marine larvae provides valuable insights into their survival, ecological interactions, evolutionary adaptations, larval dispersal, and responses to environmental changes. This knowledge is essential for understanding and managing marine ecosystems, conserving biodiversity, and supporting sustainable practices in aquaculture and fisheries. More specifically, a review of the digestive physiology in marine larvae is important for larval survival and recruitment, ecological interactions, larval dispersal and connectivity, larval adaptations and evolution, larval rearing and aquaculture, and climate change and ocean acidification.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know